ISBN :
Возрастное ограничение : 16
Дата обновления : 06.10.2023
В процессе рассуждений будут осуществляться периодические обращения к структурным композициям биологических организмов и системной теории эволюции – новой и динамично развивающейся области знаний. Целесообразность такого обращения связано с тем, что любая организация рассматривается будет рассматриваться как живая разумная система.
Кроме того, при описании смысловой подсистемы компании и механизмов ее взаимодействия с остальными подсистемами компании мы будем обращаться к концепциям современных направлений психологии.
Работа представляет из себя обобщение моего профессионального опыта, рожденного в процессе консалтинговой деятельности, позволяющей наблюдать особенности структурных композиций и траекторий развития множества компаний, вплетенное в сеть множества разнообразных современных научных концепций в области менеджмента, системной биологии и психологии.
Материал книги не является совсем абстрактным и теоретическим и содержит практические примеры того, как организации реализуют на практике те или иные из описываемых механизмов.
Не смотрите на приводимые примеры как на образец для копирования: они должны помочь Вам осознать, что предпосылки для реализации описываемых механизмов, которые на практике должны реализовываться в соответствии с аутентичностью конкретно взятой компании, существуют. Вот что в данном контексте пишет Стивен Каммингс [С. Каммингс «Реконструкция стратегии»]:
Плутарх считал, что мы должны исследовать идеи и модели, предложенные другими людьми не для того, чтобы копировать их, а как средство освежить наше собственное видение и вдохнуть энергию в наш собственный интеллектуальный стиль.
Итак, давайте освежать наше видение и вдыхать энергию в наш собственный интеллектуальный стиль!
Книга состоит из трех частей:
? В первой главе описываются общие понятия теории систем, принципы самоорганизации сложных систем и структурные особенности живых систем;
? Вторая глава посвящена описанию структурных композиций смысловой, когнитивной и операционной подсистем компании, а также структурной композиции сетей создания ценности;
? Третья глава посвящена описанию механизмов попарного динамического взаимодействия вышеуказанных подсистем.
В заключении приводятся краткие выводы трех глав и книги в целом.
Глава 1. Общие принципы развития и трансформации сложных систем
Во всех дальнейших рассуждениях мы будем рассматривать организацию как живую разумную систему, а значит первое, что нам необходимо сделать: обсудить понятия и базовые принципы теории систем, после обратиться к принципам самоорганизации и развития сложных систем и, наконец, рассмотреть структурные особенности живых систем. Этим вопросам и будет посвящена данная глава.
Общие принципы теории систем
Начнем с определения понятия системы, которое звучит следующим образом:
Система есть совокупность взаимодействующих элементов, обладающая свойством целостности
Определение и простое, и крайне сложное одновременно. Простое потому, что из него понятно, что любая система состоит из ряда частей (элементов), которые взаимодействуют между собой. Но сложность заключается в том, что формального определения понятия «целостность» не существует и пока дать такого определения не сумел никто со времен Аристотеля, сказавшего лишь что «целое есть нечто большее суммы своих частей».
Люди способны на уровне понимания давать в повседневной жизни оценку «целый», «целостный». Например, велосипед только с передним колесом и отсутствующим задним будет оценен как не являющийся целостным. Кувшин с отбитой ручкой также будет оценен как не являющийся целостным.
То есть альтернативой «целостности» выступает «ущербность». Сходство велосипеда без заднего колеса и кувшина без ручки заключается в том, что они не способны эффективно выполнять те функции, для которых они создавались. Иными словами, в терминологии теории систем, они не обладают требуемыми системными свойствами.
Таким образом, строго ответить на вопрос о том, обладает ли та или иная совокупность взаимодействующих элементов свойством целостности, нельзя, но можно приближаться к ответу, проводя оценку через призму нижеприведенных базовых принципов теории систем. Но лишь приближаться, поскольку в конце все равно останется серая область неформализуемого, которое дано людям в понимании, но не в эксплицитном (явно выраженном и формально зафиксированном) знании.
Принцип 1
Каждая система обладает свойствами, которые не присущи ни одному из ее элементов.
Эти свойства называются системными. Например, ни одному из нейронов мозга не присуща способность мыслить, но человеческий мозг в целом, будучи системой взаимодействующих нейронов, такой способностью обладает. Более простой пример: хлор – ядовитый газ, а натрий – крайне активный металл, но их соединение (система их двух элементов) – привычная нам пищевая соль, у которой нет ничего общего с токсичностью хлора и активностью натрия.
Здесь речь идёт о том, что свойства системы нельзя свести к сумме свойств её отдельных элементов и во взаимодействии возникает нечто большее, чем простая сумма свойств частей.
Вследствие того, что системные свойства проявляются как результат взаимодействия, их часто называют эмерджентными (возникающими).
Принцип 2
Каждый элемент системы обладает свойствами, которые он теряет, будучи отделенным от системы.
Например, сердце (как и любой другой орган) сохраняет жизнеспособность только как часть организма и теряет ее вне организма.
Также мы можем посмотреть на организм как на систему из большого количества клеток и констатировать тот факт, что любая клетка, сохраняет жизнеспособность только как часть организма и, будучи отделенной от организма, погибает.
Подобные факты привели чилийских ученых Умберто Матурану и Франциско Варелу к концепции «автопоэза» (самосозидания), согласно которой любая живая система (клетка, организм, экосистема) является сетью, каждый элемент которой участвует в создании и трансформации других элементов сети, будучи сам при этом создаваем и трансформируем другими элементами сети. Об этом мы подробнее поговорим чуть позднее.
Принцип 3
Изменение любого из элементов системы напрямую или косвенно отражается на состоянии других элементов системы.
Например, изменения в логистической подсистеме организации в явном виде отражается и на подсистемах продаж и производства, и наоборот. Дефицит запасов, как проблема логистической функции, приводит к падению продаж, и, наоборот, необеспечение продаж на требуемом уровне в силу внутренних проблем в торговой подсистеме (отток клиентов и т.п.) приводит к затовариванию складов и/или невыполнению обязательств по объемам вывоза перед поставщиками.
Принцип 3 отражает очень важную особенность систем: элементы системы, обмениваясь в процессе взаимодействия материей или информацией непрерывно изменяют состояние друг друга. Причем в силу того, что взаимодействия носят попарно двусторонний, а, в итоге, для сложных систем многосторонний, характер, возникает эффект, при котором изменение состояния одного элемента изменяет состояние других элементов, но последовавшее за этим изменение состояния других элементов, с свою очередь, изменяет состояние исходно рассматриваемого элемента.
Данный феномен называют петлей обратной связи.
Рисунок 5. Петля обратной связи
Подобные петли обратной связи возникают в любых системах, и именно они формируют то, что называют динамическим взаимодействием.
Например, в многопредельной производственной цепочке металлообрабатывающего предприятия, один процесс, в который как ресурсы включены станок или группа станков, производит заготовку, которая отправляется на последующие стадии обработки – на следующий процесс. Если качество заготовки не отвечает требованиям следующего процесса, заготовка возвращается обратно на предшествующий процесс с требованием ее доработать. Таким образом возникает обратная связь, в результате которой в рамках исходного процесса, помимо переделки заготовки, должен быть проведен анализ причин брака и перестройка процесса с тем, чтобы в дальнейшем производить заготовки необходимого качества с первого раза.
Таким образом отрабатывает петля обратной связи и процессы из логики линейного взаимодействия «Сдал -> Принял» разворачиваются в сложное нелинейное взаимодействие (особенно учитывая то, что в рассматриваемом примере дефект может быть некритичным на следующей стадии обработки, но может оказаться критичным на более поздних стадиях и вернуться обратно от них с требованием устранения несоответствий). В результате этого набор производственных процессов из линейной цепочки превращается в тесно переплетенную многочисленными взаимосвязями сеть.
В сложных системах с интенсивным взаимодействием элементов понятия прямой и обратной связи становятся условными: при отсутствии четкой отправной точки и при непрерывном взаимодействии элементов, понятия первичного и вторичного исчезают, в результате чего говорят о динамическом взаимодействии элементов, каждый из которых изменяет состояние других.
Принцип 4
В сложных системах возникает эффект самоорганизации
Здесь мы перейдем к подробному обсуждению явления самоорганизации, которым обусловлена способность сложных систем к саморазвитию и самотрансформации.
Принципы самоорганизации сложных систем
Согласно формальному определению, самоорганизация – упорядочение элементов одного уровня в системе (https://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0) за счёт внутренних факторов, без специфического внешнего воздействия извне.
Когда говорят о самоорганизации на практике, речь идет о том, что сложные саморазвивающиеся системы любого характера – биологического, социального, экономического, политического и пр. – обеспечивают свой рост и устойчивость посредством внутренней гармонизации взаимодействий элементов и перестройки внутренних связей при необходимости. Целью перестроек внутренних связей является сохранение устойчивости и жизнеспособности системы, а также формирование ряда специфических системных свойств.
Ярким примером самоорганизации являются колонии мирциновых муравьев [Матурана Умберто Р., Варела Франсиско Х. «Древо познания: Биологические корни человеческого понимания»]. Данные колонии представляют собой систему, в которой особи разделяются на касты, причем представители разных каст отличаются даже по форме: их морфологическое строение зависит от выполняемых в муравейнике ролей.
Причем роль и присущая ей форма отдельно взятого муравья не является генетически заданными, а формируются в результате онтогенеза (индивидуальной эволюцией особи в процессе ее жизни). Между членами колонии муравьев происходит обмен химическими веществами (в том числе гормонами), в результате чего обеспечивается дифференциация и распределение ролей.
Так, если удалить из муравейника царицу (единственную самку, способную давать потомство), то гормональный дисбаланс, вызванный ее отсутствием, приведет к изменению питания личинок, в результате чего из них разовьются новые царицы. Таким образом, онтогенез каждой отдельной особи согласуется с онтогенезом всех остальных особей.
Еще одной интересной особенностью данных муравьев является то, что жизнеспособность особей, связанных единой структурной динамикой, является свойством, приобретенным в контексте вышеприведенного принципа №2 теории систем: если отдельную особь изолировать от муравейника, то даже в условиях достаточного наличия пищи она довольно быстро погибает.
Впервые о самоорганизации заговорили специалисты по кибернетике и сам термин пришел именно от них. В кибернетических системах явления самоорганизации можно наблюдать в результате задания ограниченного набора простых правил взаимодействия элементов.
Одна из первых и наиболее известных демонстраций возникновения самоорганизации при задании одного лишь простого правила взаимодействий появилась в кибернетике в 50-е годы.
Суть демонстрации заключалась в том, что была собрана поверхность, состоящая из большого числа маленьких лампочек с логическими переключателями, и было задано простое правило: каждая лампочка может находиться в положение «Включено» только если определенное количество смежных с ней лампочек в данный момент горят, а в противном случае лампочка должна отключаться.
В начальный момент эксперимента определенная доля лампочек в случайном порядке включалась экспериментаторами. После этого лампочки в соответствии с заданным правилом начинали загораться или гаснуть, что приводило к беспорядочной смене картинки.
Но далее, после короткого периода беспорядочного мерцания, возникали упорядоченные паттерны: по сети лампочек проходили повторяющиеся волны или же формировалась статичная картинка. Таким образом на месте изначального хаоса возникал порядок и возникал он в результате задания одного единственного правила взаимодействия.
Другим примером возникновения порядка при задании ограниченного набора правил взаимодействия является подход, который был реализован армией США при проведении съемок местности в ходе боевых действий на Ближнем Востоке.
Первоначально для осуществления съемок пытались запускать группы дронов, каждый из которых двигался по своему заданному маршруту, но при этом столкнулись с проблемой: если часть дронов сбивали, на карте съемки оставались белые пятна.
Решить данную проблему удалось после того, как вместо задания траекторий движения для дронов задали два простых правила:
? Лететь и снимать ближайшую еще не снятую область (информация о том, какие области засняты, а какие – нет, получалась каждым дроном в режиме реального времени);
? Не сближаться с другими дронами ближе, чем на Х метров.
После реализации управления на основе этих правил удалось получать сплошную съемку местности даже в ситуациях, когда часть дронов оказывалась сбитой. Задание двух простых правил позволило системе дронов самоорганизовываться и достигать поставленных целей.
В физике и физической химии самоорганизация связана с понятием диссипативных структур, введенным в научный обиход бельгийским физико-химиком, лауреатом Нобелевской премии Ильей Пригожиным.
Понятие диссипативных структур было введено им для описания поведения энергетически открытых физических и химических систем, находящихся вдали от состояния термодинамического равновесия: речь шла о системах, которые не являются замкнутыми и обмениваются веществом и/или энергией с окружающей средой.
Было установлено, что в таких системах могут спонтанно возникать упорядоченные структуры, устойчивость которых обусловлена притоком энергии извне и способностью к ее диссипации (рассеиванию в окружающую среду).
Простой и впечатляющий пример возникновения упорядоченных структур – образование ячеек Бенара в нагреваемых жидкостях.
Французский физик Анри Бенар обнаружил, что подогрев тонкого слоя жидкости может приводить к образованию упорядоченных структур: когда разность температур между нижней и верхней поверхностями жидкости достигает определенного значения, возникает упорядоченная структура виде конвективных ячеек в форме цилиндрических валов, по поверхности которых горячая жидкость поднимается вверх, а холодная опускается вниз.
Рисунок 6. Ячейки Бенара
Таким образом, изначально неупорядоченный тепловой перенос приобретал структуру – упорядоченность.
Но на этом все не заканчивалось и при изменении режима нагрева данная структура могла разрушаться и на ее месте возникала новая, более сложная, структура в виде правильных шестигранных (похожих на медовые соты) структур, в которых горячая жидкость поднималась по центру ячеек, а более холодная опускалась вдоль краев ячеек.
Таким образом, оказалось, что эффекты самоорганизации могут возникать в нерукотворных системах на самом низком уровне сложности – уровне материи.
Ключевой особенностью сложных диссипативных структур является то, что они, обмениваясь материей и энергией с внешней средой, способны уходить все дальше и дальше от состояния равновесия, переходя к новым степеням порядка и сложности через последовательные скачкообразные трансформации [Фритьоф Капра «Паутина жизни. Новое научное понимание живых систем»]. Такие трансформации возникают в точках потери системой устойчивости, достигаемые через механизмы положительной (усиливающей) обратной связи. В этих точках диссипативная структура либо разрушается, либо переходит на новый уровень порядка и сложности.
Примечание 4:
Строго говоря, в точках потери устойчивости система всегда разрушается, поскольку далее прежней структуры уже не существует, и вопрос заключается лишь в том, возникнет ли вслед за этим новая упорядоченная структура или осуществится переход к неупорядоченности – хаосу.
Таким образом оказалось, что последовательность трансформаций систем с диссипативной структурой является не поиском положения равновесия, а, наоборот, удалением от него. Такие системы развиваются как раскручивающийся маховик с усиливающей обратной связью, при которой каждый оборот прибавляет скорости вращения.
Удивительным и новым здесь является то, что усиливающая обратная связь «вразнос», уводящая систему все дальше от положения равновесия, которая всегда считалась разрушительной в механике и кибернетике, в диссипативных структурах оказалась источником структурных перестроек и перехода к новым степеням порядка и сложности.
Таким образом, развитие сложной самоорганизующейся системы с диссипативной структурой – история про постоянное движение прочь от положения равновесия.
Рисунок 7. Развитие сложной самоорганизующейся системы с диссипативной структурой
Толчками для структурных изменений в системе при этом являются акты ее взаимодействия с внешней средой. Но эти внешние воздействия лишь инициируют сам процесс перестройки, в то время как сама логика перестройки определяется внутренней структурой системы и историей её предыдущих изменений.
Влияние истории предыдущих изменений системы на направление ее скачкообразной трансформации, по сути, означает, что в процессе развития сложная самоорганизующаяся система, являющаяся диссипативной структурой, накапливает опыт.
Все книги на сайте предоставены для ознакомления и защищены авторским правом